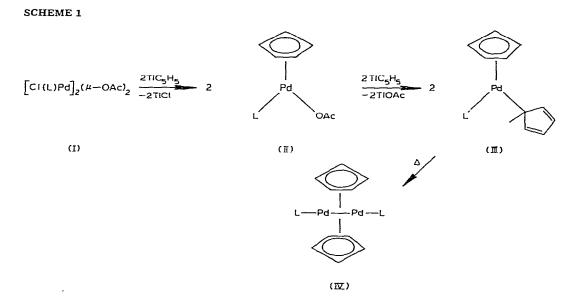
Journal of Organometallic Chemistry, 204 (1981) 415-422 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

INTRAMOLECULAR METALATION OF PBu^t₂Ph AND PBu^t₃ IN PALLADIUM ACETATE COMPLEXES

H. WERNER * and H.J. KRAUS

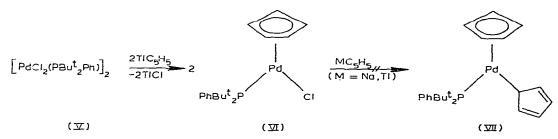
Institut für Anorganische Chemie der Universität, Am Hubland, D-8700 Würzburg (West Germany)

(Received July 11th, 1980)


Summary

Reaction of $[PdCl_2(PBu^t_2Ph)]_2$ with silver acetate gives the internally metalated complex $[PdCH_2CMe_2PBu^tPh]_2(\mu-Cl)_2$. This reacts with TlC_5H_5 and LiC_5Me_5 with chloride-bridge cleavage to yield $C_5R_5PdCH_2PBu^tPh$ (R = H, Me). The complex $[PdCH_2CMe_2PBu^t_2]_2(\mu-Cl)_2$, prepared from $[PdCl_2(PBu^t_3)]_2$ and CH_3COOAg , is analogously converted into $C_5R_5PdCH_2CMe_2PBu^t_2$. The chloride complex $C_5H_5Pd(PBu^t_2Ph)Cl$ does not eliminate HCl to form C_5H_5 - $PdCH_2CMe_2PBu^tPh$.

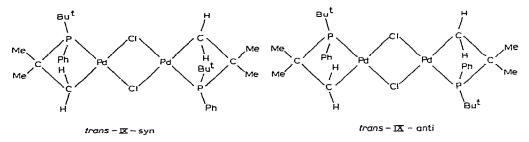
Introduction


We recently reported [1] that the reaction of $[Cl(L)Pd]_2(\mu$ -OAc)₂ (I; L = PMe₃, PPrⁱ₃, PPh₃) with stoicheiometric amounts of thallium cyclopentadienide produces (via the intermediate II) the complexes $(\eta^5 - C_5H_5)Pd(\eta^1 - C_5H_5)L$ (III) which represent a new class of fluxional molecules. Whereas the bis(cyclopentadienyl)phosphine palladium complexes III are stable at $-20^{\circ}C$ in the solid state and in solution, at room temperature, in toluene, for example, they react slowly to give the dinuclear sandwiches $(C_5H_5)_2Pd_2L_2$ (IV) [2]. The rate of the intramolecular rearrangement of III and of the reaction of III to give IV sharply increases with the decreasing size of the phosphine ligand, the rate being much greater for L = PMe₃ than for L = PPrⁱ₃ [1].

These observations prompted us to prepare palladium complexes of type III and IV with phosphines even more bulky than PPr^{i}_{3} , and in particular with $PBu_{2}^{t}Ph$. During these attempts we observed a very facile intramolecular metalation of this coordinated phosphine, leading to complexes with a four-membered PdCCP ring skeleton.

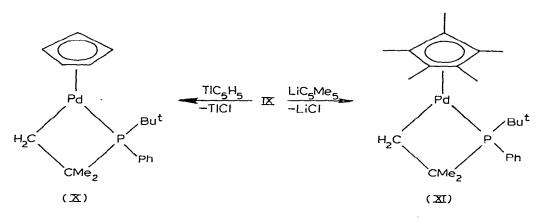
Results

The chloro-bridged complex V [3] reacts with TlC_5H_5 to yield $\text{C}_5\text{H}_5\text{Pd}$ -(PBu^t₂Ph)Cl (VI). The properties of this green crystalline compound are very similar to those of other cyclopentadienylpalladium complexes of composition $\text{C}_5\text{H}_5\text{Pd}(\text{PR}_3)$ X [4]. Further treatment of VI with excess TlC_5H_5 does not lead to substitution of chloride by C_5H_5 to form VII, and this is consistent with the behavior of other $\text{C}_5\text{H}_5\text{Pd}(\text{L})\text{Cl}$ complexes towards NaC_5H_5 and TlC_5H_5 [5].



As a result of our experience with the synthesis of the above-mentioned compounds III, we expected that the more appropriate starting material for the preparation of $(\eta^5 \cdot C_5 H_5)Pd(\eta^1 \cdot C_5 H_5)PBu^t_2Ph$ (VII) would be the acetate complex $C_5H_5Pd(PBu^t_2Ph)OAc$. The proposed synthetic route to this complex was the same as shown in Scheme 1, i.e. reaction of V with AgOAc to give $[Cl(PBu^t_2Ph)Pd]_2(\mu \cdot OAc)_2$, which on further treatment with TlC₅H₅ should yield $C_5H_5Pd(PBu^t_2Ph)OAc$.

The product of the reaction of V with silver acetate, however, is not complex VIII, but the dinuclear chloro-bridged compound IX, formed by elimination of acetic acid from the intermediate VIII.


$$V \xrightarrow{2 \operatorname{AgOAc}}{-2 \operatorname{AgCl}} [Cl(PBu^{t}_{2}Ph)Pd]_{2}(\mu - OAc)_{2} \xrightarrow{-2 \operatorname{HOAc}} [PdCH_{2}CMe_{2}PBu^{t}Ph]_{2}(\mu - Cl)_{2}$$

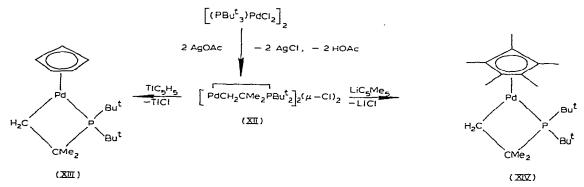
Complex IX forms yellow crystals which are rather air-stable and soluble in most organic solvents. The presence of more than one isomeric form in solution is indicated by the ³¹P NMR spectrum. This shows three signals, of which the two at lowest and highest field (see Table 1) presumably belong to the *trans* isomers, IX-syn and IX-anti. These signals are nearly of equal intensity. The third, less intense signal, may be tentatively assigned to one of the *cis* isomers.

The most characteristic feature of the ¹H NMR spectrum of IX is the presence of two sets of doublets for the methyl protons of the $-CMe_2$ - units in the four-membered rings. The different environment of the two Me groups on the carbon is thus confirmed. The CH₂ protons of the ring also give rise to two signals, one of which is covered by the stronger peaks of the CMe₂ and Bu^t groups.

Reaction of IX with TlC_5H_5 in benzene occurs with chloride-bridge cleavage to give the cyclopentadienyl complex X. Analogously, treatment of IX with LiC_5Me_5 produces the pentamethylcyclopentadienyl complex XI.

Both compounds, X and XI, smoothly react with acetic acid, but not by attack at the Pd—CH₂ bond to form $C_5H_5Pd(PBu^t_2Ph)OAc$ (R = H, Me). Although the exact composition of the product has not yet been established, the NMR data indicate that the PdCH₂CMe₂PBu^tPh ring remains intact during the acidolysis, and it is possible that a dinuclear complex containing acetate bridges is formed.

Attempts were made to synthesize the remarkably stable cyclopentadienyl complex X possessing a palladium—carbon σ -bond by an alternative route. Previous work done in our laboratory [6] has shown that the complex C₅H₅Pd-[P(OC₆H₄- σ -Me)₃]Cl reacts in CH₂Cl₂/pentane solution with Al₂O₃ (on passage


Com-	¹ H NMR									³¹ P NMR
Vold	δ(C ₅ R ₅)	(Hd)r	ξ (Bul)	J(PH)	δ(CMe2)	(HA)	δ (CH ₂)	(HA)	δ (Ph)	ō
ΝI	5,50d	2.5	1. 37d	14.2					7.18m(2 H) 7.12m(3 H)	79.20
XI			1.57 d(br)	15,8	1,55d	15.8	1.15d(br)	16.0	7.95m(2 H)	-31,29 b
					1.47d	15.8	a		7,36m(3 H)	-31,49
										-31,86
×	6,05d	2,1	1.55d	14,9	1.28 d	14,9	1.73d	8,2	7.68m(2 H)	6.92
					0,99d	14,9	1.68d	8.2	7.17m(3 H)	
XI	2.19d	2.5	1,10d	14.0	1.31d	13.5	0.92		7.79m(2 H)	5,88
					0.97d	14.0	a		7.04m(3 H)	
XIII	5,89d	1.9	1.19d	13.0	1.21d	13.6	1.38d	5.8	•	10.87
XIV	2,18d	2.5	1.35 d	12,5	1,42d	12.5	0.97d	7.5		10,58

1H AND ³¹P NMR DATA OF C₅H₅Pd(PBu^t₂Ph)Cl(VI), [PdCH₂CMe₂PBu^tPh]₂(μ-Cl)₂(IX), C₅H₅PdCH₂CMe₂PBu^tR(X, XIII) AND C₅Me₅PdCH₂CMe₂PBu^tR (XI, XIV), IN C₆D₆ (δ in nom: J in Hz 1H; int mass 31 p, me area u and b

TABLE 1

through a chromatographic column) to form the ortho-metalated compound $C_5H_5Pd[OC_6H_3-o-Me)(OC_6H_4-o-Me)_2]$. Under exactly the same conditions the analogous elimination of HCl does not occur with $C_5H_5Pd(PBu^tPh)Cl$ (VI). Complex VI is also recovered unchanged after reaction with NaNH₂ in THF or with NaNH₂ in presence of 15-crown-5. The formation of a five-membered ring (which takes place in the reaction of $C_5H_5Pd[P(OC_6H_4-o-Me)_3]Cl)$ is obviously much more favored than the formation of a four-membered ring which would be involved in the reaction of VI.

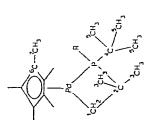
The dinuclear metalated complex $[PdCH_2CMe_2PBut_2]_2(\mu-Cl)_2$ (XII), which was recently prepared by H.C. Clark et al. [7] from K_2PdCl_4 and tri-tert-butylphosphine in N,N-dimethylformamide or from $(PhCN)_2PdCl_2$ and PBu_3^t in CH_2Cl_2 , also reacts with TlC_5H_5 and LiC_5Me_5 to give the compounds XIII and XIV. We found that the method which we used for the synthesis of IX can also be successfully applied to obtain XII; the metalation is even more facile and the yield is quantitative.

The ¹H, ³¹P and ¹³C NMR data of XIII and XIV, together with those of complexes VI, IX, X and XI, are shown in Tables 1 and 2.

Discussion

In the past decade several examples of intramolecular metalation reactions of C-H bonds in coordinated phosphine and phosphite ligands have been reported. It has generally been observed that C-H bonds in aromatic rings are more easily substituted by transition metals than those in aliphatic groups. There is also some evidence that the rate of the metalation process is specifically influenced by the transition metal. Shaw and coworkers have found, for example, that platinum complexes of composition *trans*-[PtX₂L₂] where X = Cl, Br, I and L = PBu^t₂R or PBu^tR₂ (R = phenyl, *p*-tolyl etc.) are easily metalated, whereas under the same conditions the corresponding palladium complexes *trans*-[PdX₂L₂] show no tendency to form internal metal--carbon bonds [8].

However, Clark [7,9] and Goel [10] have recently shown that it is possible to prepare complexes containing a heterocyclic ring of the type $PdCH_2CMe_2P$ - Bu^t_2 . They showed that trans-[PdCl_2(PBu^t_3)_2] and also the palladium hydrides trans-[PdHX(PBu^t_3)_2] (X = Cl or CF_3COO) are smoothly converted into the metalated complexes [PdCH_2CMe_2PBu^t_2(PBu^t_3)X]. The chloride-bridged dimer


TABLE 2

¹³C NMR DATA OF C₅H₅PdCH₂CMe₂PBu¹R(X, XIII) AND C₅Me₅PdCH₂CMe₂PBu¹R(XI, XIV), IN

	-C-	107.10 p = C -				2CMe2PBu ^L	R(XI, XIV),	IN C,D, (5	in pom: <i>I</i> in	Hz ini 'ny	lev.	
Complex	8100	1047A									(01)	
	(n-) n	(1,1) ⁿ	(J≁) ¢	J(PC)	δ(³ C)	J(PC)	δ(⁴ C)	(PC)	δ(⁵ C)	δ(⁵ C) μρεγ	5/60) 1/00	1007
×	-6 90d	0 Y F	10 00					- 1		12-1-		<i>u</i> (r'u)
	1010	0'04	33.270	16.2	29.75d	7.0	47,20d	26,5	28.72d	50	1.10 10	
XI a	6121				29,21d	3.0				1	03.0.40	2.9
		1.	34,920	11.8	31,77d	1.5	48.15d	27.9	28.90d	6.6	100 CUL	
IIIX	-3.02d	58 0	611 30	6	29,58d	2.2				0	DO'ONT	J.'E
3 VIX	9.05d	41.9	37 816	0.2	31,77 0		50,87d	20.6	31.68 d	4.9	94.184	06
			etoto		31,87		51,52d	22.1	31.82d	5.2	100 F	
0 00										1	11, 201	ŭ.,

^a Signal of ⁷C : b = 11.21d; J(PC) = 1.5, ^b Signal is partly hidden by the doublet of ⁵C, ^c Signal of ⁷C : b = 11.18d; J(PC) = 1.5,

Assignment according to:

 $[PdCH_2CMe_2PBu^t_2(\mu-Cl)]_2$ can be obtained either from $[PdCH_2CMe_2PBu^t_2-(PBu^t_3)Cl]$ by phosphine elimination or from $[PdCl_2(PhCN)_2]$ and PBu^t_3 in CH_2Cl_2 .

The results of the present work complement those studies in two ways. First, they show that not only palladium complexes of tri-t-butylphosphine but also those of the less bulky di-t-butylphenylphosphine easily undergo intramolecular metalation reactions. Second, they prove that metalation is possible not only by elimination of HCl [7,10] or H₂ [9] but also by elimination of HOAc, and that, at least in the case of the dimeric compounds $[Cl(PBu^t_2R)Pd]_2(\mu-X)_2$ (R = Bu^t, Ph), this reaction is even more favored for X = OAc than for X = Cl.

Experimental

NMR spectra were recorded on the following instruments: Varian T 60 (¹H), Varian XL 100 (³¹P), Bruker WH 90-FT (¹³C). The complexes $[PdCl_2(PBu^t_2Ph)]_2$ and $[PdCl_2(PBu^t_3)]_2$ were prepared according to ref. 3. All reactions were carried out under purified nitrogen.

Preparation of $C_{s}H_{s}Pd(PBu^{t}_{2}Ph)Cl(VI)$

 $[PdCl_2(PBut_2Ph)]_2$ (V) (0.5 g, 0.63 mmol) was dissolved in 10 ml THF and TlC_5H_5 (0.37 g, 1.37 mmol) was added. The solution was stirred for 10 min, and the solvent was removed. The residue was extracted with 5 ml toluene and the solution was filtered. After addition of 10 ml pentane, the flask was kept at -78° C for two days. The green crystalline, air-stable precipitate was collected, washed with cold pentane and dried in vacuo. Yield: 0.42 g (79%). M.p. 139–140°C (dec.). (Found: C, 53.18; H, 6.97; Pd, 25.18. C₁₉H₂₈ClPPd calcd.: C, 53.16; H, 6.58; Pd, 24.79%).

Preparation of $[PdCH_2CMe_2PBu^tPh]_2$ (IX)

 $[PdCl_2(PBu^t_2Ph)]_2$ (V) (0.5 g, 0.63 mmol) was dissolved in 10 ml CHCl₃ and AgOAc (0.23 g, 1.38 mmol) was added. The solution was stirred for 12 h in the dark, then filtered and the solvent removed. The residue was recrystallized from CH₂Cl₂/pentane to give yellow crystals. Yield: 0.25 g (55%). M.p. 115°C (dec.). (Found: C, 46.44; H, 6.55; Pd, 29.59. C₂₈H₄₄Cl₂P₂Pd₂ calcd.: C, 46.30; H, 6.11; Pd, 29.30%).

The complex $[PdCH_2CMe_2PBut_2]_2(\mu-Cl)_2$ (XII) was analogously prepared from $[PdCl_2(PBut_3)]_2$ and AgOAc and obtained as pale yellow crystals. The ¹H NMR spectrum was identical to that reported in ref. 7. Yield nearly quantitative.

Preparation of $C_5H_5PdCH_2CMe_2PBu^tPh(X)$

 $[PdCH_2CMe_2PBu^tPh]_2(\mu-Cl)_2$ (IX) (0.25 g, 0.34 mmol) was dissolved in 10 ml C₆H₆ and TlC₅H₅ (0.4 g, 1.48 mmol) was added. The solution was stirred for 30 min, and the solvent was removed. The residue was extracted three times with 10 ml pentane, and the filtered solution was concentrated in vacuo. After cooling to $-78^{\circ}C$ for two days, orange-brown crystals were obtained. Yield: 0.18 g (67%). M.p. 66–68°C (dec.). (Found: C, 57.25; H, 7.02; Pd, 27.51; MW 392 (MS). C₁₉H₂₇PPd calcd.: C, 58.10; H, 6.93; Pd, 27.09%; MW 392.80).

Preparation of $C_{s}Me_{s}PdCH_{2}CMe_{2}PBu^{t}Ph$ (XI)

 $[\dot{PdCH_2CMe_2PBu^tPh}]_2(\mu-Cl)_2$ (IX) (1.09 g, 1.50 mmol) was dissolved in 10 ml C_6H_6 and LiC_5Me_5 (0.45 g, 3.17 mmol) was added. The solution was stirred for 3 h, and the solvent was removed. The residue was extracted twice with 5 ml pentane, and the filtered solution was concentrated in vacuo. After cooling to $-78^{\circ}C$ for three days, red crystals were obtained. Yield: 0.54 g (39%). M.p. 145–146°C. (Found: C, 62.02; H, 8.12; Pd, 22.30; MW 462 (MS). $C_{24}H_{37}PPd$ calcd.: C, 62.27; H, 8.06; Pd, 22.98%; MW 462.94).

Preparation of $C_5H_5PdCH_2CMe_2PBut_2$ (XIII)

The complex was prepared from $[PdCH_2CMe_2PBut_2]_2$ (XII) (0.5 g, 0.73 mmol) and TlC_5H_5 (0.43 g, 1.6 mmol) as for the analogue X. Red crystals. Yield: 0.42 g (77%). M.p. 99–100°C (dec.). (Found: C, 54.14; H, 8.24; Pd, 28.05; MW 372 (MS). $C_{17}H_{31}PPd$ calcd.: C, 54.77; H, 8;38; Pd, 28.54%; MW 372.81).

Preparation of $C_5Me_5PdCH_2CMe_2PBu_2^{t}$ (XIV)

The complex was prepared from $[PdCH_2CMe_2PBu^t_2]_2(\mu-Cl)_2$ (XII) (0.7 g, 1.02 mmol) and LiC_5Me_5 (0.32 g, 2.24 mmol) as for the analogue XI. Red crystals. Yield: 0.54 g (60%). M.p. 160°C. (Found: C, 59.56: H, 9.39; Pd, 23.97; MW 443 (MS). $C_{22}H_{41}PPd$ calcd.: C, 59.52; H, 9.54; Pd, 23.97%; MW 443.95).

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support, and the DEGUSSA for gifts of chemicals. We also thank Miss Dr. G. Lange for the mass spectra, Mrs. E. Ullrich and R. Schedl for the elemental analysis, and Dr. W. Buchner for NMR measurements and valuable discussions.

References

- 1 H. Werner and H.J. Kraus, Angew. Chem., 91 (1979) 1013; Angew. Chem. Int. Ed. Engl., 18 (1979) 948.
- 2 H. Werner and H.J. Kraus, J. Chem. Soc. Chem. Commun., (1979) 814.
- 3 B.E. Mann, B.L. Shaw and R.M. Slade, J. Chem. Soc. (A), (1971) 2976.
- 4 R.J. Cross and R. Wardle, J. Chem. Soc. (A), (1971) 2000.
- 5 H.J. Kraus, unpublished results.
- 6 D.J. Tune and H. Werner, Helv. Chim. Acta, 58 (1975) 2240.
- 7 H.C. Clark, A.B. Goel, R.G. Goel, S. Goel and W.O. Ogini, Inorg. Chim. Acta, 31 (1978) L441.
- 8 A.J. Cheney, B.E. Mann, B.L. Shaw and R.M. Slade, J. Chem. Soc. (A). (1971) 3833.
- 9 H.C. Clark, A.B. Goel and S. Goel, Inorg. Chem., 18 (1979) 2803.
- 10 R.G. Goel and R.G. Montemayor, Inorg. Chem., 16 (1977) 2183.